Proof 01. 1 ⊢ map f X Y, hypo. 02. 2 ⊢ x ∈ X, hypo. 03. 1, 2 ⊢ app f x ∈ Y, map_app_in_cod 1 2. 04. 1, 2 ⊢ set (app f x), set_intro 3. map_app_is_set. ⊢ map f X Y → x ∈ X → set (app f x), subj_intro_ii 4.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.