Proof 01. 1 ⊢ x ∈ UnivCl, hypo. 02. 1 ⊢ set x, set_intro 1. 03. ⊢ x ⊆ UnivCl, UnivCl_is_greatest. 04. 1 ⊢ x ∈ power UnivCl, power_intro 2 3. 05. ⊢ x ∈ UnivCl → x ∈ power UnivCl, subj_intro 4. 06. ⊢ ∀x. x ∈ UnivCl → x ∈ power UnivCl, uq_intro 5. 07. ⊢ UnivCl ⊆ power UnivCl, incl_intro 6. 08. ⊢ power UnivCl ⊆ UnivCl, UnivCl_is_greatest. power_UnivCl. ⊢ power UnivCl = UnivCl, incl_antisym 8 7.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.