Theorem empty_function

Theorem. empty_function
function ∅
Proof
01. 1 ⊢ (x, y1) ∈ ∅, hypo.
02. 2 ⊢ (x, y2) ∈ ∅, hypo.
03. 1 ⊢ y1 = y2, empty_efq 1.
04. 1, 2 ⊢ y1 = y2, wk 3.
05. ⊢ (x, y1) ∈ ∅ → (x, y2) ∈ ∅ → y1 = y2, subj_intro_ii 4.
06. ⊢ ∀y2. (x, y1) ∈ ∅ → (x, y2) ∈ ∅ → y1 = y2, uq_intro 5.
07. ⊢ ∀y1. ∀y2. (x, y1) ∈ ∅ → (x, y2) ∈ ∅ → y1 = y2, uq_intro 6.
08. ⊢ ∀x. ∀y1. ∀y2. (x, y1) ∈ ∅ → (x, y2) ∈ ∅ → y1 = y2, uq_intro 7.
empty_function. ⊢ function ∅, function_intro empty_relation 8.

Dependencies
The given proof depends on three axioms:
comp, efq, eq_subst.