Proof 01. 1 ⊢ f ⊆ X × Y, hypo. 02. 2 ⊢ ∀x. x ∈ X → ∃b. ∀y. b = y ↔ (x, y) ∈ f, hypo. 03. 3 ⊢ (x, y1) ∈ f, hypo. 04. 4 ⊢ (x, y2) ∈ f, hypo. 05. 1, 3 ⊢ (x, y1) ∈ X × Y, incl_elim 1 3. 06. 1, 3 ⊢ x ∈ X ∧ y1 ∈ Y, prod_elim_pair 5. 07. 1, 3 ⊢ x ∈ X, conj_eliml 6. 08. 1, 2, 3 ⊢ ∃b. ∀y. b = y ↔ (x, y) ∈ f, uq_bounded_elim 2 7. 09. 1, 2, 3, 4 ⊢ y1 = y2, ex_uniq_elimr 8 3 4. 10. 1, 2 ⊢ (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2, subj_intro_ii 9. 11. 1, 2 ⊢ ∀y2. (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2, uq_intro 10. 12. 1, 2 ⊢ ∀y1. ∀y2. (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2, uq_intro 11. 13. 1, 2 ⊢ ∀x. ∀y1. ∀y2. (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2, uq_intro 12. 14. 1 ⊢ relation f, relation_from_incl 1. 15. 1, 2 ⊢ function f, function_intro 14 13. 16. 1 ⊢ dom f ⊆ X, dom_of_subclass_prod 1. 17. 2 ⊢ X ⊆ dom f, subclass_dom_from_ex_uniq 2. 18. 1, 2 ⊢ dom f = X, incl_antisym 16 17. 19. 1 ⊢ rng f ⊆ Y, rng_of_subclass_prod 1. 20. 1, 2 ⊢ map f X Y, map_intro 15 18 19. map_from_ex_uniq. ⊢ f ⊆ X × Y → (∀x. x ∈ X → ∃b. ∀y. b = y ↔ (x, y) ∈ f) → map f X Y, subj_intro_ii 20.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.