Theorem map_from_ex_uniq

Theorem. map_from_ex_uniq
f ⊆ X × Y → (∀x. x ∈ X → ∃b. ∀y. b = y ↔ (x, y) ∈ f) → map f X Y
Proof
01. 1 ⊢ f ⊆ X × Y, hypo.
02. 2 ⊢ ∀x. x ∈ X → ∃b. ∀y. b = y ↔ (x, y) ∈ f, hypo.
03. 3 ⊢ (x, y1) ∈ f, hypo.
04. 4 ⊢ (x, y2) ∈ f, hypo.
05. 1, 3 ⊢ (x, y1) ∈ X × Y, incl_elim 1 3.
06. 1, 3 ⊢ x ∈ X ∧ y1 ∈ Y, prod_elim_pair 5.
07. 1, 3 ⊢ x ∈ X, conj_eliml 6.
08. 1, 2, 3 ⊢ ∃b. ∀y. b = y ↔ (x, y) ∈ f,
  uq_bounded_elim 2 7.
09. 1, 2, 3, 4 ⊢ y1 = y2, ex_uniq_elimr 8 3 4.
10. 1, 2 ⊢ (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2,
  subj_intro_ii 9.
11. 1, 2 ⊢ ∀y2. (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2,
  uq_intro 10.
12. 1, 2 ⊢ ∀y1. ∀y2. (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2,
  uq_intro 11.
13. 1, 2 ⊢ ∀x. ∀y1. ∀y2. (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2,
  uq_intro 12.
14. 1 ⊢ relation f, relation_from_incl 1.
15. 1, 2 ⊢ function f, function_intro 14 13.
16. 1 ⊢ dom f ⊆ X, dom_of_subclass_prod 1.
17. 2 ⊢ X ⊆ dom f, subclass_dom_from_ex_uniq 2.
18. 1, 2 ⊢ dom f = X, incl_antisym 16 17.
19. 1 ⊢ rng f ⊆ Y, rng_of_subclass_prod 1.
20. 1, 2 ⊢ map f X Y, map_intro 15 18 19.
map_from_ex_uniq. ⊢ f ⊆ X × Y →
  (∀x. x ∈ X → ∃b. ∀y. b = y ↔ (x, y) ∈ f) → map f X Y,
  subj_intro_ii 20.

Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.