Proof 01. 1 ⊢ ∀x. x ∈ X → ∃z. z ∈ Y ∧ ∀y. z = y ↔ (x, y) ∈ f, hypo. 02. 2 ⊢ x ∈ X, hypo. 03. 1, 2 ⊢ ∃z. z ∈ Y ∧ ∀y. z = y ↔ (x, y) ∈ f, uq_bounded_elim 1 2. 04. 4 ⊢ z ∈ Y ∧ ∀y. z = y ↔ (x, y) ∈ f, hypo. 05. 4 ⊢ z ∈ Y, conj_eliml 4. 06. 4 ⊢ ∀y. z = y ↔ (x, y) ∈ f, conj_elimr 4. 07. 4 ⊢ z = z ↔ (x, z) ∈ f, uq_elim 6. 08. ⊢ z = z, eq_refl. 09. 4 ⊢ (x, z) ∈ f, lsubj_elim 7 8. 10. 4 ⊢ x ∈ dom f, dom_intro 9. 11. 1, 2 ⊢ x ∈ dom f, ex_elim 3 10. 12. 1 ⊢ x ∈ X → x ∈ dom f, subj_intro 11. 13. 1 ⊢ ∀x. x ∈ X → x ∈ dom f, uq_intro 12. 14. 1 ⊢ X ⊆ dom f, incl_intro 13. subclass_dom_from_ex_uniq. ⊢ (∀x. x ∈ X → ∃z. z ∈ Y ∧ ∀y. z = y ↔ (x, y) ∈ f) → X ⊆ dom f, subj_intro 14.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.