Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 3 ⊢ c ∈ ℝ, hypo. 04. ⊢ a - b = a + -b, rsub_eq. 05. ⊢ b - c = b + -c, rsub_eq. 06. ⊢ (a - b) + (b - c) = (a + -b) + (b + -c), eq_cong_ii 4 5, f x y = x + y. 07. 2 ⊢ -b ∈ ℝ, rneg_closed 2. 08. 3 ⊢ -c ∈ ℝ, rneg_closed 3. 09. 1, 2, 3 ⊢ a + -b + b + -c = (a + -b) + (b + -c), radd_assoc_llolloo 1 7 2 8. 10. 1, 2 ⊢ a + -b + b + -c = a + (-b + b) + -c, radd_assoc_llloolo 1 7 2. 11. 1, 2, 3 ⊢ (a + -b) + (b + -c) = a + (-b + b) + -c, eq_trans_ll 9 10. 12. 1, 2, 3 ⊢ (a - b) + (b - c) = a + (-b + b) + -c, eq_trans 6 11. 13. 2 ⊢ -b + b = b + -b, radd_comm 7 2. 14. 2 ⊢ b + -b = 0, radd_inv 2. 15. 2 ⊢ -b + b = 0, eq_trans 13 14. 16. 2 ⊢ a + (-b + b) = a + 0, eq_cong 15, f x = a + x. 17. 1 ⊢ a + 0 = a, radd_neutr 1. 18. 1, 2 ⊢ a + (-b + b) = a, eq_trans 16 17. 19. 1, 2, 3 ⊢ (a - b) + (b - c) = a + -c, eq_subst 18 12, P t ↔ (a - b) + (b - c) = t + -c. 20. ⊢ a - c = a + -c, rsub_eq. 21. 1, 2, 3 ⊢ (a - b) + (b - c) = a - c, eq_trans_rr 19 20. rsub_cancel_middle. ⊢ a ∈ ℝ → b ∈ ℝ → c ∈ ℝ → (a - b) + (b - c) = a - c, subj_intro_iii 21.
Dependencies
The given proof depends on eight axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rneg_closed.