Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 3 ⊢ c ∈ ℝ, hypo. 04. 1, 2, 3 ⊢ a + b + c = a + (b + c), radd_assoc 1 2 3. 05. 1, 2, 3 ⊢ a + b + c + d = a + (b + c) + d, eq_cong 4, f t = t + d. radd_assoc_llloolo. ⊢ a ∈ ℝ → b ∈ ℝ → c ∈ ℝ → a + b + c + d = a + (b + c) + d, subj_intro_iii 5.
Dependencies
The given proof depends on three axioms:
eq_refl, eq_subst, radd_assoc.