Proof 001. 1 ⊢ set X, hypo. 002. 2 ⊢ φ = {t | ∃A. A ∈ power X ∧ t = (A, χ A X)}, hypo. 003. 3 ⊢ A ∈ power X, hypo. 004. 3 ⊢ A ⊆ X, power_elim 3. 005. 3 ⊢ map (χ A X) X {∅, {∅}}, indicator_is_map 4. 006. 1, 3 ⊢ χ A X ∈ Map X {∅, {∅}}, Map_intro 5 1. 007. 1 ⊢ A ∈ power X → χ A X ∈ Map X {∅, {∅}}, subj_intro 6. 008. 1 ⊢ ∀A. A ∈ power X → χ A X ∈ Map X {∅, {∅}}, uq_intro 7. 009. 1, 2 ⊢ map φ (power X) (Map X {∅, {∅}}), map_from_term 2 8. 010. 10 ⊢ A ∈ power X, hypo. 011. 11 ⊢ B ∈ power X, hypo. 012. 12 ⊢ app φ A = app φ B, hypo. 013. 1, 2, 10 ⊢ app φ A = χ A X, map_from_term_app 2 8 10. 014. 1, 2, 11 ⊢ app φ B = χ B X, map_from_term_app 2 8 11. 015. 1, 2, 10, 12 ⊢ χ A X = app φ B, eq_symm_trans 13 12. 016. 1, 2, 10, 11, 12 ⊢ χ A X = χ B X, eq_trans 15 14. 017. 10 ⊢ A ⊆ X, power_elim 10. 018. 11 ⊢ B ⊆ X, power_elim 11. 019. 19 ⊢ x ∈ A, hypo. 020. 10, 19 ⊢ app (χ A X) x = {∅}, indicator_app_is_one 17 19. 021. 1, 2, 10, 11, 12, 19 ⊢ app (χ B X) x = {∅}, eq_subst 16 20, P t ↔ app t x = {∅}. 022. 10, 19 ⊢ x ∈ X, incl_elim 17 19. 023. 1, 2, 10, 11, 12, 19 ⊢ x ∈ B, from_indicator_app_is_one 18 22 21. 024. 1, 2, 10, 11, 12 ⊢ x ∈ A → x ∈ B, subj_intro 23. 025. 25 ⊢ x ∈ B, hypo. 026. 11, 25 ⊢ app (χ B X) x = {∅}, indicator_app_is_one 18 25. 027. 1, 2, 10, 11, 12, 25 ⊢ app (χ A X) x = {∅}, eq_subst_rev 16 26, P t ↔ app t x = {∅}. 028. 11, 25 ⊢ x ∈ X, incl_elim 18 25. 029. 1, 2, 10, 11, 12, 25 ⊢ x ∈ A, from_indicator_app_is_one 17 28 27. 030. 1, 2, 10, 11, 12 ⊢ x ∈ B → x ∈ A, subj_intro 29. 031. 1, 2, 10, 11, 12 ⊢ x ∈ A ↔ x ∈ B, bij_intro 24 30. 032. 1, 2, 10, 11, 12 ⊢ ∀x. x ∈ A ↔ x ∈ B, uq_intro 31. 033. 1, 2, 10, 11, 12 ⊢ A = B, ext 32. 034. 1, 2 ⊢ A ∈ power X → B ∈ power X → app φ A = app φ B → A = B, subj_intro_iii 33. 035. 1, 2 ⊢ ∀B. A ∈ power X → B ∈ power X → app φ A = app φ B → A = B, uq_intro 34. 036. 1, 2 ⊢ ∀A. ∀B. A ∈ power X → B ∈ power X → app φ A = app φ B → A = B, uq_intro 35. 037. 1, 2 ⊢ inj φ (power X) (Map X {∅, {∅}}), inj_intro 9 36. 038. 38 ⊢ f ∈ Map X {∅, {∅}}, hypo. 039. 38 ⊢ map f X {∅, {∅}}, Map_elim 38. 040. 38 ⊢ function f ∧ dom f = X ∧ rng f ⊆ {∅, {∅}}, map_unfold 39. 041. 38 ⊢ dom f = X, conj_elimlr 40. 042. 42 ⊢ A = inv_img f {{∅}}, hypo. 043. 43 ⊢ x ∈ X, hypo. 044. 38, 43 ⊢ app f x ∈ {∅, {∅}}, map_app_in_cod 39 43. 045. 38, 43 ⊢ app f x ∈ {∅} ∨ app f x ∈ {{∅}}, union_elim 44. 046. 46 ⊢ app f x ∈ {∅}, hypo. 047. 46 ⊢ app f x = ∅, sg_elim empty_set_is_set 46. 048. 46 ⊢ ∅ = app f x, eq_symm 47. 049. 38, 43, 46 ⊢ (x, ∅) ∈ f, map_app_elim 39 43 48. 050. ⊢ inv_img f {{∅}} ⊆ dom f, inv_img_incl_in_dom. 051. 42 ⊢ A ⊆ dom f, eq_subst_rev 42 50, P t ↔ t ⊆ dom f. 052. 38, 42 ⊢ A ⊆ X, eq_subst 41 51, P t ↔ A ⊆ t. 053. 53 ⊢ x ∈ A, hypo. 054. 42, 53 ⊢ x ∈ inv_img f {{∅}}, eq_subst 42 53. 055. 42, 53 ⊢ ∃y. y ∈ {{∅}} ∧ (x, y) ∈ f, inv_img_elim 54. 056. 56 ⊢ y ∈ {{∅}} ∧ (x, y) ∈ f, hypo. 057. 56 ⊢ y ∈ {{∅}}, conj_eliml 56. 058. 56 ⊢ (x, y) ∈ f, conj_elimr 56. 059. 38 ⊢ function f, conj_elimll 40. 060. 38, 43, 46, 56 ⊢ y = ∅, fn_unique_value 59 58 49. 061. ⊢ set {∅}, set_sg empty_set_is_set. 062. 56 ⊢ y = {∅}, sg_elim 61 57. 063. 38, 43, 46, 56 ⊢ ∅ = {∅}, eq_symm_trans 60 62. 064. 38, 43, 46, 56 ⊢ ⊥, neg_elim zero_neq_one 63. 065. 38, 42, 43, 46, 53 ⊢ ⊥, ex_elim 55 64. 066. 38, 42, 43, 46 ⊢ ¬x ∈ A, neg_intro 65. 067. 38, 42, 43, 46 ⊢ x ∈ X \ A, diff_intro 43 66. 068. 38, 42, 43, 46 ⊢ app (χ A X) x = ∅, indicator_app_is_zero 52 67. 069. 38, 42, 43, 46 ⊢ ∅ = app (χ A X) x, eq_symm 68. 070. 38, 42, 43, 46 ⊢ app f x = app (χ A X) x, eq_trans 47 69. 071. 71 ⊢ app f x ∈ {{∅}}, hypo. 072. 71 ⊢ app f x = {∅}, sg_elim 61 71. 073. 71 ⊢ {∅} = app f x, eq_symm 72. 074. 38, 43, 71 ⊢ (x, {∅}) ∈ f, map_app_elim 39 43 73. 075. ⊢ {∅} = {∅}, eq_refl. 076. ⊢ {∅} ∈ {{∅}}, sg_intro 61 75. 077. 38, 43, 71 ⊢ x ∈ inv_img f {{∅}}, inv_img_intro 76 74. 078. 38, 42, 43, 71 ⊢ x ∈ A, eq_subst_rev 42 77, P t ↔ x ∈ t. 079. 38, 42, 43, 71 ⊢ app (χ A X) x = {∅}, indicator_app_is_one 52 78. 080. 38, 42, 43, 71 ⊢ {∅} = app (χ A X) x, eq_symm 79. 081. 38, 42, 43, 71 ⊢ app f x = app (χ A X) x, eq_trans 72 80. 082. 38, 42, 43 ⊢ app f x = app (χ A X) x, disj_elim 45 70 81. 083. 38, 42 ⊢ x ∈ X → app f x = app (χ A X) x, subj_intro 82. 084. 38, 42 ⊢ ∀x. x ∈ X → app f x = app (χ A X) x, uq_intro 83. 085. 38, 42 ⊢ map (χ A X) X {∅, {∅}}, indicator_is_map 52. 086. 38, 42 ⊢ f = χ A X, map_extensionality 39 85 84. 087. 1, 38, 42 ⊢ set A, subset 52 1. 088. 1, 38, 42 ⊢ A ∈ power X, power_intro 87 52. 089. 1, 2, 38, 42 ⊢ app φ A = χ A X, map_from_term_app 2 8 88. 090. 1, 2, 38, 42 ⊢ χ A X = app φ A, eq_symm 89. 091. 1, 2, 38, 42 ⊢ f = app φ A, eq_trans 86 90. 092. 1, 2, 38, 42 ⊢ (A, f) ∈ φ, map_app_elim 9 88 91. 093. 1, 2, 38, 42 ⊢ f ∈ rng φ, rng_intro 92. 094. 1, 2, 38 ⊢ A = inv_img f {{∅}} → f ∈ rng φ, subj_intro 93. 095. 1, 2, 38 ⊢ ∀A. A = inv_img f {{∅}} → f ∈ rng φ, uq_intro 94. 096. 1, 2, 38 ⊢ f ∈ rng φ, disused_eq 95. 097. 1, 2 ⊢ f ∈ Map X {∅, {∅}} → f ∈ rng φ, subj_intro 96. 098. 1, 2 ⊢ ∀f. f ∈ Map X {∅, {∅}} → f ∈ rng φ, uq_intro 97. 099. 1, 2 ⊢ Map X {∅, {∅}} ⊆ rng φ, incl_intro 98. 100. 1, 2 ⊢ sur φ (power X) (Map X {∅, {∅}}), sur_intro 9 99. 101. 1, 2 ⊢ bij φ (power X) (Map X {∅, {∅}}), bij_from_inj_sur 37 100. 102. 1, 2 ⊢ ∃φ. bij φ (power X) (Map X {∅, {∅}}), ex_intro 101. 103. 1 ⊢ φ = {t | ∃A. A ∈ power X ∧ t = (A, χ A X)} → ∃φ. bij φ (power X) (Map X {∅, {∅}}), subj_intro 102. 104. 1 ⊢ ∀φ. φ = {t | ∃A. A ∈ power X ∧ t = (A, χ A X)} → ∃φ. bij φ (power X) (Map X {∅, {∅}}), uq_intro 103. 105. 1 ⊢ ∃φ. bij φ (power X) (Map X {∅, {∅}}), disused_eq 104. 106. 1 ⊢ num_eq (power X) (Map X {∅, {∅}}), num_eq_intro 105. power_equinum_indicators. ⊢ set X → num_eq (power X) (Map X {∅, {∅}}), subj_intro 106.
Dependencies
The given proof depends on 12 axioms:
comp, efq, eq_refl, eq_subst, ext, infinity, lem, pairing, power, subset, substitution, union.