Theorem nmul_comm

Theorem. nmul_comm
a ∈ ℕ → b ∈ ℕ → a⋅b = b⋅a
Proof
nmul_comm. ⊢ a ∈ ℕ → b ∈ ℕ → a⋅b = b⋅a,
  pred_ii_restr nat_incl_in_real rmul_comm.

Dependencies
The given proof depends on five axioms:
comp, eq_subst, radd_closed, real_is_set, rmul_comm.