Proof 01. 1 ⊢ x ∈ A \ {x}, hypo. 02. 1 ⊢ ¬x ∈ {x}, diff_elimr 1. 03. 1 ⊢ set x, set_intro 1. 04. ⊢ x = x, eq_refl. 05. 1 ⊢ x ∈ {x}, sg_intro 3 4. 06. 1 ⊢ ⊥, neg_elim 2 5. diff_sg_contra. ⊢ x ∈ A \ {x} → ⊥, subj_intro 6.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.