Proof 01. 1 ⊢ P u, hypo. 02. 2 ⊢ ∃a. set a ∧ ∀x. a = x ↔ P x, hypo. 03. 2 ⊢ ∃a. set a ∧ {a} = {x | P x}, sg_eq_from_ex_uniq 2. 04. 4 ⊢ set a ∧ {a} = {x | P x}, hypo. 05. 4 ⊢ set a, conj_eliml 4. 06. 4 ⊢ {a} = {x | P x}, conj_elimr 4. 07. 4 ⊢ ⋂{a} = ⋂{x | P x}, eq_cong 6, f t = ⋂t. 08. 4 ⊢ ⋂{a} = a, Intersection_sg 5. 09. ⊢ a = a, eq_refl. 10. 4 ⊢ a ∈ {a}, sg_intro 5 9. 11. 4 ⊢ a ∈ {x | P x}, eq_subst 6 10, P t ↔ a ∈ t. 12. 4 ⊢ P a, comp_elim 11. 13. 1, 2, 4 ⊢ u = a, ex_uniq_set_elimr 2 1 12. 14. 1, 2, 4 ⊢ u = ⋂{a}, eq_trans_rr 13 8. 15. 1, 2, 4 ⊢ u = ⋂{x | P x}, eq_trans 14 7. 16. 1, 2 ⊢ u = ⋂{x | P x}, ex_elim 3 15. iota_intro. ⊢ P u → (∃a. set a ∧ ∀x. a = x ↔ P x) → u = ⋂{x | P x}, subj_intro_ii 16.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.