Proof 01. 1 ⊢ function f, hypo. 02. 2 ⊢ set (dom f), hypo. 03. 1, 2 ⊢ set (rng f), substitution 1 2. 04. 1 ⊢ relation f, fn_is_rel 1. 05. ⊢ dom f ⊆ dom f, incl_refl. 06. ⊢ rng f ⊆ rng f, incl_refl. 07. 1 ⊢ f ⊆ dom f × rng f, relation_incl_prod 4 5 6. 08. 1, 2 ⊢ set (dom f × rng f), set_prod 2 3. 09. 1, 2 ⊢ set f, subset 7 8. function_is_set. ⊢ function f → set (dom f) → set f, subj_intro_ii 9.
Dependencies
The given proof depends on 11 axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, power, subset, substitution, union.