Theorem img_graph2

Theorem. img_graph2
set x → set y → img {(∅, x), ({∅}, y)} {∅, {∅}} = {x, y}
Proof
01. 1 ⊢ set x, hypo.
02. 2 ⊢ set y, hypo.
03. ⊢ set ∅, empty_set_is_set.
04. ⊢ set {∅}, set_sg 3.
05. ⊢ img {(∅, x), ({∅}, y)} {∅, {∅}}
  = img {(∅, x)} {∅, {∅}} ∪ img {({∅}, y)} {∅, {∅}}, img_union.
06. ⊢ img {(∅, x)} {∅, {∅}}
  = img {(∅, x)} {∅} ∪ img {(∅, x)} {{∅}}, img_dist_union.
07. ⊢ img {({∅}, y)} {∅, {∅}}
  = img {({∅}, y)} {∅} ∪ img {({∅}, y)} {{∅}}, img_dist_union.
08. 1 ⊢ img {(∅, x)} {∅} = {x}, img_sg_sg 3 1.
09. 2 ⊢ img {({∅}, y)} {{∅}} = {y}, img_sg_sg 4 2.
10. ⊢ ¬∅ = {∅}, zero_neq_one.
11. ⊢ ¬{∅} = ∅, neq_symm 10.
12. 1 ⊢ img {(∅, x)} {{∅}} = ∅, img_sg_sg_neq 3 1 4 10.
13. 2 ⊢ img {({∅}, y)} {∅} = ∅, img_sg_sg_neq 4 2 3 11.
14. 1 ⊢ img {(∅, x)} {∅, {∅}} = {x} ∪ img {(∅, x)} {{∅}},
  eq_subst 8 6, P t ↔ img {(∅, x)} {∅, {∅}} = t ∪ img {(∅, x)} {{∅}}.
15. 1 ⊢ img {(∅, x)} {∅, {∅}} = {x} ∪ ∅, eq_subst 12 14,
  P t ↔ img {(∅, x)} {∅, {∅}} = {x} ∪ t.
16. ⊢ {x} ∪ ∅ = {x}, union_neutr.
17. 1 ⊢ img {(∅, x)} {∅, {∅}} = {x}, eq_subst 16 15,
  P t ↔ img {(∅, x)} {∅, {∅}} = t.
18. 2 ⊢ img {({∅}, y)} {∅, {∅}} = ∅ ∪ img {({∅}, y)} {{∅}},
  eq_subst 13 7, P t ↔ img {({∅}, y)} {∅, {∅}} = t ∪ img {({∅}, y)} {{∅}}.
19. 2 ⊢ img {({∅}, y)} {∅, {∅}} = ∅ ∪ {y}, eq_subst 9 18,
  P t ↔ img {({∅}, y)} {∅, {∅}} = ∅ ∪ t.
21. ⊢ ∅ ∪ {y} = {y}, union_neutl.
22. 2 ⊢ img {({∅}, y)} {∅, {∅}} = {y}, eq_subst 21 19,
  P t ↔ img {({∅}, y)} {∅, {∅}} = t.
23. 1 ⊢ img {(∅, x), ({∅}, y)} {∅, {∅}} = {x} ∪ img {({∅}, y)} {∅, {∅}},
  eq_subst 17 5, P t ↔ img {(∅, x), ({∅}, y)} {∅, {∅}}
    = t ∪ img {({∅}, y)} {∅, {∅}}.
24. 1, 2 ⊢ img {(∅, x), ({∅}, y)} {∅, {∅}} = {x} ∪ {y},
  eq_subst 22 23, P t ↔ img {(∅, x), ({∅}, y)} {∅, {∅}} = {x} ∪ t.
img_graph2. ⊢ set x → set y → img {(∅, x), ({∅}, y)} {∅, {∅}} = {x, y},
  subj_intro_ii 24.

Dependencies
The given proof depends on 10 axioms:
comp, efq, eq_refl, eq_subst, ext, infinity, lem, pairing, subset, union.