Proof 01. 1 ⊢ x ∈ inv_img R (A ∩ B), hypo. 02. 1 ⊢ ∃y. y ∈ A ∩ B ∧ (x, y) ∈ R, inv_img_elim 1. 03. 3 ⊢ y ∈ A ∩ B ∧ (x, y) ∈ R, hypo. 04. 3 ⊢ y ∈ A ∩ B, conj_eliml 3. 05. 3 ⊢ y ∈ A, intersection_eliml 4. 06. 3 ⊢ y ∈ B, intersection_elimr 4. 07. 3 ⊢ (x, y) ∈ R, conj_elimr 3. 08. 3 ⊢ x ∈ inv_img R A, inv_img_intro 5 7. 09. 3 ⊢ x ∈ inv_img R B, inv_img_intro 6 7. 10. 3 ⊢ x ∈ inv_img R A ∩ inv_img R B, intersection_intro 8 9. 11. 1 ⊢ x ∈ inv_img R A ∩ inv_img R B, ex_elim 2 10. 12. ⊢ x ∈ inv_img R (A ∩ B) → x ∈ inv_img R A ∩ inv_img R B, subj_intro 11. 13. ⊢ ∀x. x ∈ inv_img R (A ∩ B) → x ∈ inv_img R A ∩ inv_img R B, uq_intro 12. inv_img_dist_inter. ⊢ inv_img R (A ∩ B) ⊆ inv_img R A ∩ inv_img R B, incl_intro 13.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.