Proof 01. 1 ⊢ ∀x. x ∈ M → u ⊆ x, hypo. 02. 2 ⊢ y ∈ u, hypo. 03. 3 ⊢ x ∈ M, hypo. 04. 1, 3 ⊢ u ⊆ x, uq_bounded_elim 1 3. 05. 1, 2, 3 ⊢ y ∈ x, incl_elim 4 2. 06. 1, 2 ⊢ x ∈ M → y ∈ x, subj_intro 5. 07. 1, 2 ⊢ ∀x. x ∈ M → y ∈ x, uq_intro 6. 08. 2 ⊢ set y, set_intro 2. 09. 1, 2 ⊢ y ∈ ⋂M, Intersection_intro 8 7. 10. 1 ⊢ y ∈ u → y ∈ ⋂M, subj_intro 9. 11. 1 ⊢ ∀y. y ∈ u → y ∈ ⋂M, uq_intro 10. 12. 1 ⊢ u ⊆ ⋂M, incl_intro 11. lower_bound_incl_in_Intersection. ⊢ (∀x. x ∈ M → u ⊆ x) → u ⊆ ⋂M, subj_intro 12.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.