Proof 01. 1 ⊢ y = x, hypo. 02. 2 ⊢ y = z, hypo. 03. 1 ⊢ x = y, eq_symm 1. 04. 1, 2 ⊢ x = z, eq_trans 3 2. eq_symm_trans. ⊢ y = x → y = z → x = z, subj_intro_ii 4.
DependenciesThe given proof depends on two axioms:eq_refl, eq_subst.