Proof 01. 1 ⊢ x = y, hypo. 02. ⊢ f x = f x, eq_refl. 03. 1 ⊢ f x = f y, eq_subst 1 2, P u ↔ f x = f u. f_equal. ⊢ x = y → f x = f y, subj_intro 3.
DependenciesThe given proof depends on two axioms:eq_refl, eq_subst.