List of curves

Table of contents

  1. Functions
  2. Sigmoid functions
  3. Bell shaped curves
  4. Curves
  5. Generalized spirography
  6. Remainder
  7. Bibliography

Functions

Rectangle wave
y = sgn(mod(x-1,2)-1)
Triangle wave
y = |mod(x,2)-1|
Sawtooth wave
y = mod(x,1)

Sigmoid functions

y = x/sqrt(x^2+1)
y = x/(|x|+1)
y = x/(|x|^n+1)^(1/n)
y = tanh(x)
y = erf(sqrt(pi)/2*x)
y = 2/pi*arctan(pi/2*x)
y = 2/pi*gd(pi/2*x)
y = x/ln(exp(|x|)+1)

Bell curves

y = exp(-x^2)
y = 1/cosh(x)

Curves

Circle
x^2+y^2 = r^2
x = r*cos(t)
y = r*sin(t)
t in [0,2pi)
r: radius
Ellipse
(x/a)^2+(y/b)^2 = 1
x = a*cos(t)
y = b*sin(t)
t in [0,2pi)
Hyperbola
x^2-y^2 = 1
x = cosh(t)
y = sinh(t)
t in (-∞,∞)
Square
|x|+|y| = 1
x = sgn(cos(t))*cos(t)^2
y = sgn(sin(t))*sin(t)^2
t in [0,2pi)
Spiral
x = t*cos(2pi*t)
y = t*sin(2pi*t)
t in [0,n)
Logarithmic spiral
x = a*exp(b*t)*cos(t)
y = a*exp(b*t)*sin(t)
t in (-∞,∞)
a>0, b≠0
Cardioid
x = (1-cos(t))*cos(t)
y = (1-cos(t))*sin(t)
t in [0,2pi)
Astroid
x = cos(t)^3
y = sin(t)^3
t in [0,2pi)
Quadrifolium
x = sin(2t)*cos(t)
y = sin(2t)*sin(t)
t in [0,2pi)
Figure-of-eight loop
y^2 = x^2-1/4*x^4
x = 2cos(t)
y = sin(2t)
t in [0,2pi)
Curves with loops
y^2 = x^2-x^3
True lemniscate
(x^2+y^2)^2 = 2a^2*(x^2-y^2)
Cassinian ovals
(x^2+y^2)^2 - 2c^2*(x^2-y^2) = a^4-c^4
Strophoid
(a-x)*y^2 = (a+x)*x^2
x = a*(t^2-1)/(1+t^2)
y = a*t*(t^2-1)/(1+t^2)
t in (-∞,∞)
a: diameter of the loop

Generalized spirography

Quadrifolium
(x^2+y^2)^3=(x^2-y^2)^2
x = cos(2t)*cos(t)
y = cos(2t)*sin(t)
t in [0,2pi)
Ten leafs
x = cos(5t)*cos(4t)
y = cos(5t)*sin(4t)
t in [0,2pi)
Starfish
x = (4+sin(5*t))*cos(t)
y = (4+sin(5*t))*sin(t)
t in [0,2pi)

Remainder

Lattice
sin(x) = sin(y)
Rings
sin(x)+sin(y)=1
10*sin(x)*sin(y)=1
Difficult to draw
gamma(x*y) = gamma(x+y)
Infinitely quick oscillation
f(x) = sin(1/x)
x in (0,∞)

Bibliography

  1. »List of curves«. In: Wikipedia.
  2. John J. O'Connor, Edmund F. Robertson: »Famous Curves Index«. In: MacTutor History of Mathematics archive, April 2015.
  3. J. Dennis Lawrence: »A catalog of special plane curves«. Dover Publications, 1972.
  4. Jürgen Köller: »Einfach geschlossene Kurven«. In: Mathematische Bastelleien, 2010.

This text is released under the terms of the Creative Commons license CC0.